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Here we investigate whether varying the diffusion-gradient orientation during a general waveform single
pulsed-field gradient sequence improves sensitivity to the size of coherently oriented pores over having a
fixed orientation. The experiment optimises the shape and the orientation of the gradient waveform in
each of a set of measurements to minimise the expected variance of estimates of the parameters of a sim-
ple model. A key application motivating the work is measuring the size of axons in white matter. Thus,
we use a two compartment white matter model with impermeable, single-radius cylinders, and search
for waveforms that maximise the sensitivity to axon radius, intra-cellular volume fraction and diffusion
constants. Output of the optimisation suggests the only benefit of allowing the gradient orientation to
vary in the plane perpendicular to the cylinders is that we can gain perpendicular gradient strength by
maximising two orthogonal gradients simultaneously. This suggests that varying orientation in itself
does not increase the sensitivity to model parameters. On the other hand, the variation in a plane con-
taining the parallel direction increases the sensitivity significantly because parallel sensitivity improves
the diffusion constant estimates. However, we also find that similar improvement in the estimates can be
achieved without optimising the orientation, but by having one measurement in the parallel and the rest
in the perpendicular direction. The optimisation searches a very large space where it cannot hope to find
the global minimum so we cannot make a categorical conclusion. However, given the consistency of the
results in multiple reruns and variations of the experiments reported here, we can suggest that for prob-
ing coherently oriented systems, pulse sequences with variable orientation, such as double-wave vector
sequences, do not offer more advantage than fixed orientation sequences with optimised shape. The
advantage of varying orientation is however likely to emerge for more complex systems with dispersed
pore orientation.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion weighted MR is a non-destructive probe into the
microstructure of materials, and can provide insight into pore mor-
phology and fluid transport [1]. The technique is therefore useful
for studying porous structures such as sandstone rocks, catalysts,
and biological tissues [2–5]. Here we focus on biomedical applica-
tions, where diffusion MRI offers the potential to map microstruc-
tural features in tissue [6–9]. For example, in nervous tissue such
as white matter in the brain, axon radius helps determine the con-
duction velocity [10,11] and hence changes in axon radius affect
the nerve function. Thus imaging axon radius is a key challenge
[6–8] as a reliable technique could provide insight into variations
in cognitive performance within the general population and neuro-
nal diseases that alter axon radius distribution, such as autism
ll rights reserved.

k).
[12,13], amyotrophic lateral sclerosis (ALS) [14,15] or schizophre-
nia [16,17].

The choice of diffusion MRI pulse sequence and its parameters
affect the sensitivity of diffusion MRI signal to the microstructure
[18,19,9,20–22]. The standard pulsed gradient spin-echo sequence
(PGSE) has been used with great success in animals and in vitro tis-
sue [6–8,23,24], on water diffusing between beads [25], phantoms
[26], and water diffusing between two infinite glass planes [27],
but these approaches do not translate easily to humans due to
the need for strong gradient strengths and long acquisition times.
By carefully choosing the combination of PGSE settings, Alexander
et al. got promising results on a human scanner with 0.06 T/m, but
lack precision in estimates of the size of smaller axons (radii less
than 3 lm) [28]. Alternative gradient waveforms, such as oscillat-
ing gradient spin-echo (OGSE) [29,9,20,21] or chirped [30], that
contain a range of frequencies may provide greater sensitivity to
smaller pore sizes. Drobnjak et al. [19] used optimisation tech-
niques to identify the optimal shape of the generalised gradient
waveform for the maximum sensitivity to the microstructure
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1 integ rounds to the nearest integer.
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parameters of a simple white matter model. They found, in simu-
lation, that optimisation of the shape of the gradient waveform im-
proves sensitivity to model parameters for both human and animal
MR systems. In particular, the optimised waveforms made axon ra-
dii smaller than 3 lm more distinguishable than rectangular
waveforms.

One limitation of the pulse sequence model in [19] is that the
gradient orientation is fixed within each waveform. Variable orien-
tation of the diffusion gradient, such as that in double-PGSE
sequence [31], may provide additional sensitivity to pore sizes
[32–36]. The double-PGSE sequence (double-wave-vector se-
quence) involves two consecutive PGSE blocks, each with a pair
of diffusion gradients. The two pairs of gradients can have any an-
gle between them and are separated by a mixing time. The
sequence is primarily intended to probe microscopic anisotropy
in macroscopically isotropic samples (such as the grey matter),
where the single-PGSE sequence lacks sensitivity [32,37,38]. The
technique has also been used to probe sizes of oriented pores
[36,33], and others e.g. [32,35] suggest a potential advantage over
the single-PGSE even in these systems. Shemesh et al. [39] do show
an advantage of double-PGSE over single-PGSE using lower gradi-
ent strength. Specifically, they estimate oriented pore sizes with
similar precision from both sequences, but using lower gradient
strength in the double-PGSE. However it is not clear whether that
advantage comes from the different shape of the waveform be-
tween the two sequences or specifically from varying gradient ori-
entation in the double-PGSE. Drobnjak et al. [40] consider spiral
waveforms, but they use it largely as a demonstration of their sig-
nal model. Thus the wider space of pulse sequences with varying
orientation remains largely unexplored and their influence and
benefit is not well known.

Here we use a stochastic optimisation procedure to search for the
combination of varying-orientation gradient waveforms that are
most sensitive to microstructure parameters typical for the white
matter. We use the optimisation framework developed in [19] that
optimises an imaging protocol consisting of several measurements,
each with their own gradient waveform, to maximise their sensitiv-
ity to the parameters of a simple white matter model that includes
axon radius. The measurements use the same basic pulse sequence
structure as the PGSE, but replace the rectangular pulses with a gra-
dient waveform defined discretely by a sequence of values that are
free to vary independently. In contrast to [19], however, here we al-
low the gradient orientation to vary arbitrarily throughout each
waveform. The recent extension of the method to 3D in [40] enables
this more general optimisation. Thus, each gradient vector compo-
nent, i.e. Gx, Gy and Gz, is defined discretely and each point of each
component is optimised independently. Experiments use the same
simplified-CHARMED model as in [18] and, in simulation, compare
the sensitivity of optimised protocols with varying gradient orienta-
tion to those with fixed orientation. Amongst others, we consider
cases when orientation is allowed to vary in the x–y plane (perpen-
dicular to the white matter fibres), the x–z plane (parallel to the
white matter fibres) and freely in x, y and z.

We start with the outline of the tissue and signal model
together with the optimisation framework in Section 2. Experi-
ments follow, which compare sensitivity to model parameters,
over a range of axon radii, of optimised protocols with various con-
straints on the gradient orientation in Sections 3 and 4. Finally, the
Discussion summarises findings, highlights limitations, and sug-
gests further work and applications.

2. Methods

This section first describes the model used to calculate the dif-
fusion MR signal. It then describes the optimisation framework
used to determine the gradient waveform.
2.1. Tissue model

The white matter tissue model which we use is described in
[18]. It is a simplified-CHARMED model with two compartments
(hindered and restricted), with a single axon radius and assuming
cylindrical symmetry of the apparent diffusion tensor in the extra
cellular space. The model assumes parallel non-abutting cylindrical
axon cells of fixed direction (along the z-axis), with equal radii and
impermeable walls embedded in a homogenous extra-cellular
medium. The parameters of the model are: the volume fraction
f 2 [0,1] of the intra cellular compartment; the axon direction n;
the axon radius R; the intrinsic diffusion coefficient dk, which is
the same in both compartments; and the apparent diffusion coef-
ficient d\. Ref. [18] gives a more complete description of the tissue
model.

2.2. Pulse sequence model

The pulse sequence model has the same basic structure as the
PGSE sequence, with two generalised (arbitrary) gradient wave-
forms in place of the two fixed rectangular pulses as Fig. 1 illus-
trates. The generalised gradient waveforms, go = [gox, goy, goz], are
placed one on each side of the 180� RF pulse. Each component of
the first one, gox(ns), goy(ns) and goz(ns), n = 1, . . . ,N, is parame-
trized with N equally spaced points, and starts Tprep time after
the 90� RF pulse is finished. The second one is the mirror reflection
of the first. The full representation of the gradient in time is

gðnsÞ¼

0 06n<N1

goððn�N1þ1ÞsÞ N16n<N1þN
0 N1þN6n<N1þNþN2

goððN1þ2NþN2�nÞsÞ N1þNþN26n<N1þ2NþN2

0 N1þ2NþN26n;

8>>>><
>>>>:

ð1Þ

where N1 = integ((P90/2 + Tprep)/s) is the number of steps before the
gradient starts1, N2 = integ(P180/s) is the number of steps during the
180� RF pulse and N = integ((TE/2 � P180/2 � P90/2 � Tprep)/s) is the
number of steps during one gradient waveform, n is an integer, TE is
the echo time, P90 and P180 are respective durations of the 90� and
180� RF pulses, and s is a fixed time interval.

2.3. Signal model

We write the diffusion MR signal

E ¼ fEr þ ð1� f ÞEh; ð2Þ

where Er and Eh are normalised MR signals coming from the
restricted (intra-cellular) and the hindered (extra-cellular) com-
partments respectively [41]. The hindered diffusion produces a
Gaussian displacement distribution so that [42,43]:

Eh ¼ exp �c2Dh

Z TE

0

Z t

0
geff ðt0Þdt0

����
����
2

dt

 !
; ð3Þ

where Dh = (dk � d\)nnT + d\I is the apparent diffusion tensor in the
extracellular space, I is the identity tensor, and geff(t0) is the effective
time-dependent gradient waveform (the same as g(t0) just with the
reversed sign of the gradient vector after the 180� pulse) and c is the
gyromagnetic ratio.

To estimate the diffusion signal from the restricted compart-
ment Er, we use the matrix formalism method originally developed
by Callaghan [44,45], and extended for gradient waveforms with
time-varying orientation in [40].



Fig. 1. Schematic representation of the sequence with generalised gradient
waveforms for all three components Gx, Gy and Gz. The generalised gradient
waveforms are mirrored about the 180� RF pulse, and amplitudes gox(ns), goy(ns),
and goz(ns), n = 1, . . . ,N are optimised to give any shape. Points on the waveforms
are separated with equal time intervals s.
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2.4. The optimisation framework

This section sets out the framework for optimising the imaging
protocol. The protocol consists of M measurements each with dif-
ferent discretised gradient waveforms gox,j, goy,j and goz,j,
j = 1, . . . ,M. We seek the gkjn = gok,j(ns), where k = x, y, z;
j = 1, . . . ,M; n = 1, . . . ,N that maximise sensitivity to the model
parameters.

The objective function

F ¼
XW
i¼1

ðJ�1Þii=w2
i ð4Þ

reflects the precision of the model parameter estimates, and is de-
fined as the sum of normalised CRLBs, for the model parameters
xi, i = 1, . . . ,W, where (J�1)ii is the CRLB for xi. Here W = 4 and the
xi are f, Dr, Dh and a. The CRLB provides a lower bound on the var-
iance of a fitted model parameter that often correlates closely with
the true variance. We assume a Rician noise model; the full expres-
sion for the CRLB assuming the Rician noise is in [18].

To ensure feasibility of the sequence on standard scanners, the
optimisation enforces gradient hardware constraints onto the
waveform amplitudes gkjn: maximum gradient strength
0 6 jgkjnj 6 jGmaxj, and the maximum slew rate 0 6 j(gkjn � gkjn�1)j/
s 6 SR, where SR is the slew rate. We enforce the maximum slew
rate by setting the time interval s > 2jGmaxj/SR.

We use a stochastic optimisation algorithm, SOMA (self-organ-
ising migratory algorithm) [46] with population size of 50, 500
migrations and otherwise default settings, to perform the minimi-
sation. The full optimisation runs SOMA five times and picks the
result with the smallest final value of the objective function. The
SOMA algorithm is parallelized using MATLAB distributed toolbox,
and a standard run takes 5h on 16 processors.

We keep the same number of iterations in the optimisation pro-
cess to that used in [19], as we make no attempt to find the global
minimum, but to find sufficiently reproducible solutions that we
can observe emerging patterns. Since we do not find the global
minimum, we refer to the protocols and waveforms that the opti-
misation outputs as optimised rather than optimal to specify that
they are suboptimal solutions. The protocol consists of M = 4 mea-
surements, which matches the number of free parameters in the
model. Previous work, e.g. [18], finds that increasing M beyond this
minimum can give minor improvements. However, larger M does
not tend to introduce new unique measurements, but rather sim-
ply adds repeats of those that appear at the minimum M to sample
more important measurements more heavily. Since here we are
primarily interested in which waveforms arise, we fix M = 4, which
minimises the complexity of the optimisation. Further details
about the optimisation framework are described in [19].

3. Experiments

This section describes the specific set of experiments that inves-
tigate whether variable orientation waveforms improve the sensi-
tivity of the signal to the microstructure parameters compared to
fixed orientation waveforms. We investigate several different cases
with different constraints on the gradient orientation to determine
which particular features contribute to the sensitivity. The section
starts by defining several types of protocols with different gradient
waveform constraints. We then describe the pulse sequence
parameters and the model parameters we use in the experiments.
Finally, we describe the model fitting procedure.

3.1. Gradient waveform orientation

We define five protocol classes:

1. Protocol M1�4:G = (Gx, 0, 0). The orientation is fixed along the
x-axis. This case is published in [19] and it serves as a bench-
mark. Here we investigate two protocols in this class with dif-
ferent maximum gradient settings: (A) jGxj 6 Gmax; (B)
j Gx j6

ffiffiffi
2
p

Gmax. Case B enables a fairer comparison with the next
class, which can achieve gradient magnitude of

ffiffiffi
2
p

Gmax along
the diagonal directions such as x = y.

2. Protocol M1�4:G = (Gx, Gy, 0). The orientation varies only per-
pendicular to the fibres (in the x–y plane) and jGxj 6 Gmax,
jGyj 6 Gmax.

3. Protocol M1�4:G = (Gx, 0, Gz). The orientation varies in a plane
parallel to the fibres (the x–z plane). We look at this case sepa-
rately from the perpendicular one as they separate the diffusion
process into: diffusion with restriction (along x) and diffusion
without restriction (along z). Here also jGxj 6 Gmax, jGzj 6 Gmax.

4. Protocol M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz). The orientation is
fixed along the x-axis for three, and fixed along the z-axis for
one measurement in a similar way to [47]. We investigate
two different maximum gradient settings: (A) jGxj 6 Gmax,
jGzj 6 Gmax; (B) jGxj 6

ffiffiffi
2
p

Gmax; jGzj 6
ffiffiffi
2
p

Gmax. Case B provides a
fair comparison with class 3 above in a similar way to class 1
case B.

5. M1�4:G = (Gx, Gy, Gz). The orientation is allowed to vary any-
where in the x–y–z coordinate system. We investigate two dif-
ferent maximum gradient settings: (A) jGxj 6 Gmax, jGyj 6 Gmax,
jGzj 6 Gmax; (B) jGxj 6

ffiffi
2
pffiffi

3
p Gmax; jGyj 6

ffiffi
2
pffiffi

3
p Gmax; jGzj 6

ffiffi
2
pffiffi

3
p Gmax. As

usual, case B normalises the maximum achievable gradient
strength in any direction for a fair comparison with the other
classes.

In total, we investigate eight protocols, which separate in two
groups that provide different kinds of comparison:

(A) Un-equal maximum jGj: Different protocols have the same
constraint on the gradient components, i.e. jGxj 6 Gmax,
jGyj 6 Gmax and jGzj 6 Gmax, but different maximum achiev-
able gradient magnitude jGj (e.g. in class 1 case A: jGj 6 Gmax

and in class 2 case A: jGj 6
ffiffiffi
2
p

Gmax). This is a situation we
have on the typical scanner, where the constraints are
imposed on each component individually.

(B) Equal maximum jGj: Different protocols have the same con-
straint jGj 6

ffiffiffi
2
p

Gmax, but different constraints on the different
gradient components. This provides a fair comparison of pro-
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tocols with different orientational constraints without giving
preference to protocols with stronger maximum achievable
gradient strength.

In the rest of the paper, when we refer to a specific protocol, we
will refer to their descriptive name from this list above, e.g. proto-
col M1�4:G = (Gx, 0, 0), A or protocol class 1 case A.
Fig. 2. Optimised gradient waveforms go(ns), n = 1, . . . ,N for M1�4:G = (Gx, Gy, 0), A. There
ordered with decreasing dominant frequency of oscillations, with the measurements of
plane is shown in the right-hand column of each subplot. The time points on the wave
coloured with the colour of the corresponding time point.
3.2. Parameters

3.2.1. Pulse sequence parameters
We take Gmax = 0.04 T/m and slew rate SR = 200 T/m/s, which is

typical of current human systems. We fix TE = 0.08 s and set the
SNR of the unweighted (no gradients) signal at 20. We set the rest
of the parameters as in [19]. We use T2 = 0.07 s, which is typical for
are four measurements for each a-priori setting of radius R. The measurements are
the highest dominant frequency in the top row. The position of vector G in the x–y
form are coloured (from black to white as the time progresses) and each vector is
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white matter. Duration of the RF pulses and preparation time are
P180 = 0.005 s, P90 = 0.0025 s, Tprep = 0.0059 s. The waveform
unit-parameters s = 0.00041 s and gstep = 0.0004 T/m are a couple
of orders of magnitude smaller than the diffusion times and max-
imum gradient strength to ensure that the discrete waveform func-
tion is a good approximation of the continuous waveform. The time
interval s also satisfies s� R2/Dr, making sure that the narrow
pulse approximation is valid within each time interval.
3.2.2. Tissue model parameters
We assume d-function priors on the model parameters: f = 0.7,

dk = 1.7 � 10�9 m2/s and d\ = 1.2 � 10�9m2/s. We assume multiple
d-function priors on axon radius R 2 {0.5, 1, 2, 3, 5} lm, and opti-
mise the protocol separately for each.
3.2.3. Estimating model parameters
The simple MCMC procedure in [18] provides samples of the

posterior distributions of the model parameters given the data.
We generate synthetic data using the optimised protocols of the
cases outlined above. We add Rician noise to each measurement
so that for the unweighted (no gradients) image SNR = 20. To fit
the model, we assume 250 repeats of each of the four measure-
ments with independent noise. We initialise the model parameters
to their true value to speed up convergence.
4. Results

We present the results in three steps. We first show the opti-
mised gradient waveforms in the optimised protocols for different
classes outlined in Section 3. We then compare the sensitivity of
the optimised protocols to model parameters by comparing the
value of their respective objective functions. Finally, we compare
the ability of the optimised protocols to recover model parameters
by comparing posterior distributions.
4.1. Optimised generalised gradient waveforms

Optimised waveforms for protocol M1�4:G = (Gx, 0, 0), A are
shown in [19]. Fig. 2 shows optimised gradient waveforms for pro-
tocol M1�4:G = (Gx, Gy, 0), A. Plots show waveforms gox(ns) and
goy(ns), n = 1, . . . ,N for each of the four measurements in the proto-
col. The optimised protocol is shown for each a-priori setting of ra-
dius R and the vector is shown for every time point ns of the
waveform go(ns).

Figs. 3 and 4 show the optimised waveforms for protocol
M1�4:G = (Gx, 0, Gz), A and M1�4: G = (Gx, Gy, Gz), A. Gx and Gy wave-
forms are very similar to the Gx component in [19]. For
M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz), A the optimised waveforms
of the first three measurements closely follow M1�4:G = (Gx, 0, 0),
A while the fourth measurement follows the z-component of
M1�4: G = (Gx, 0, Gz), A. All of the case B protocols closely follow
their A counterparts, with adjusted gradient strengths data not
shown.

As in [19], square-wave patterns with a range of frequencies
emerge in all optimised protocols and the frequency of the square
waves increases as radius decreases. These patterns arise for the
non-zero Gx and Gy component for all protocols ( Figs. 2–4). How-
ever, the Gz component does not have the square-wave pattern and
fluctuates much more randomly.

We also observe that G tends to occupy the corners of the x–y
plane, where the perpendicular gradient strength is the largest,
in both M1�4:G = (Gx, Gy, 0) and M1�4:G = (Gx, Gy, Gz). The z-compo-
nent tends less towards Gmax and fluctuates fairly randomly over
the range; see for example Fig. 3, where vector G sweeps both
the left and the right side of the x–z plane. Similar observations
can be made in Fig. 4.

Finally, Figs. 2–4 also show that the frequency of square-waves
of the Gx and Gy components consistently decreases when the Gz

component is introduced; compare for example Figs. 2 and 4.

4.2. Comparison of the objective functions

Fig. 5 shows the value of the objective function as a function of
radius, R, for all optimised protocols. In the left plot we show re-
sults for case A: the un-adjusted maximum of jGj, when jGkj 6 Gmax,
k = x, y, z. In the right plot we show results for case B: the maxi-
mum of jGj is equal for all five classes and individual limits on each
of the components appropriately adjusted (see Section 3).

In case A we obtain lower values of the objective function for
protocol M1�4:G = (Gx, Gy, 0) compared to M1�4:G = (Gx, 0, 0), which
suggests greater sensitivity to the model parameters. However, in
case B these two classes have almost identical objective functions,
suggesting that the main reason for their difference in case A is the
maximum gradient strength, and that equating maximum achiev-
able jGj renders their sensitivity the same.

On the other hand we obtain significantly lower values of the
objective function for protocol M1�4:G = (Gx, 0, Gz) compared to
M1�4:G = (Gx, 0, 0) in both cases A and B. These suggest that allow-
ing orientation parallel to the fibres provides the lower value of the
objective function.

The lowest value of the objective function is for M1�3:G = (Gx, 0,
0), M4:G = (0, 0, Gz). In case A due to the differences in the maxi-
mum gradient strengths this class lags behind M1�4: G = (Gx, 0,
Gz) and M1�4:G = (Gx, Gy, Gz). However after normalisation in case
B, it offers the lowest value of the objective function.

4.3. Comparing microstructure parameter estimates

Fig. 6, left column, shows the posterior distributions on radius R
for optimised protocols (a) M1�4:G = (Gx, Gy, 0), B, (b) M1�4:G = (Gx,
0, Gz), B and (c) M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz), B. All three pro-
tocols are of case B hence maximum achievable magnitude of the
gradient jGj is equal for all three. The posterior distributions are
markedly narrower for protocols with non-zero z-component as
the objective function values suggest. The right column of the fig-
ure confirms these results, (b) and (c) produce more accurate (clo-
ser to the diagonal) and precise (smaller error bars) estimates
compared to (a). Again following the trend of objective functions,
we see from comparing (b) and (c) that protocol M1�4:G = (Gx, 0,
Gz), B gives slightly less accurate and precise estimates than
M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz), B.

Fig. 7 shows the mean and standard deviation of posterior dis-
tributions on model parameters f, dk and d\ for optimised protocols
(a) M1�4:G = (Gx, Gy, 0), B, (b) M1�4:G = (Gx, 0, Gz), B and (c)
M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz), B. The true values are marked
with the straight line. The results for f and d\ are relatively similar
for all three protocols (protocol in (c) with slightly smaller error
bars than the ones in (a) and (b)). However, the results for the
intrinsic diffusion constant dk are significantly better (estimates
closer to the straight line and smaller error bars) for protocols with
the parallel gradient component (b) and (c) compared to the proto-
col with only perpendicular components (a). The best estimates of
dk are achieved using protocol (c).

The optimised protocols for adjusted maximum magnitude pro-
tocol M1�4:G = (Gx, 0, 0), B produces very similar results to
M1�4:G = (Gx, Gy, 0), B and M1�4:G = (Gx, Gy, Gz), B to those of
M1�4:G = (Gx, 0, Gz). Results for the A cases (with non-adjusted
maximum gradient magnitude) are the same as for the B cases, just
proportionally better/worse to their differences in maximum gra-
dient magnitude.



Fig. 3. As Fig. 2 for M1�4:G = (Gx, 0, Gz), A.
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5. Discussion

Here we investigate whether variable orientation of the diffu-
sion-gradients improves sensitivity to the size of coherently ori-
ented pores over having a fixed orientation. We find that
optimising the orientation of the gradient waveforms in the plane
perpendicular to the cylindrical fibres (the x–y plane) does not
increase sensitivity. On the other hand, optimising the orientation
in the plane parallel to the cylindrical fibres (the x–z plane) does.

All three protocols that allow non-zero Gz provide very similar
performance, although M1�3:G = (Gx, 0, 0), M4:G = (0, 0, Gz)
performs slightly better than the others. Most likely this is simply
because the optimisation for M1�3:G = (Gx, 0, 0), M4: G = (0, 0, Gz)
takes less parameters so finds a better solution during the limited
optimisation time. The observation supports the suggestion in [47]
that adding a parallel measurement improves accuracy of fixed-
direction axon diameter estimation techniques such as [6,7] that
typically acquire only perpendicular measurements. It also helps
explain why the ActiveAx orientationally invariant protocols in
[18,28] are so successful despite ostensibly containing much less
information than AxCaliber type fixed orientation protocols [6,7].
The key advantage is that the parallel measurement provides an



Fig. 4. As Fig. 2 for M1�4:G = (Gx, Gy, Gz), A except that the vector G in now shown in the x–y–z space in the right-hand column of each subplot.
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independent estimate of the intrinsic diffusivity dk, which is much
harder to estimate with a perpendicular gradient. The reduced fre-
quency of oscillations in the protocols with non-zero Gz compared
to those with Gz = 0 arise from the same effect. To estimate intrin-
sic diffusion constant dk with a perpendicular gradient requires
short diffusion time (high frequency) to minimise interaction with
the restricting boundaries. However, once dk is known from a par-
allel measurement where no restriction occurs, the remaining
parameters can be estimated with lower frequencies. These effects
reduce the minimum observable pore size for fixed Gmax.

As expected, using more than one gradient component im-
proves the results because each added component increases the
maximum magnitude of the gradient. For example, the difference
in the maximum magnitude between gradient vectors G = (Gx, 0,
0) and G = (Gx, Gy, Gz) is
ffiffiffi
3
p

, which is sufficient to make the model
parameter estimates significantly more accurate and precise.

The optimised, perpendicular to the fibres, waveforms Gx and Gy

are very much alike, with square wave oscillations appearing con-
sistently. They tend to be out of phase to allow the maximum jGj at
the corners of the Gx–Gy square. The frequency of the waves
increases as the radius decreases, as for the optimised protocols
with fixed-orientation perpendicular, gradient waveforms in [19].
The optimised parallel waveforms Gz do not oscillate in the same
way. Unlike Gx and Gy which mainly take �Gmax and Gmax values,
Gz takes the whole range of possible values in between fairly ran-
domly. As discussed above, the Gz component is useful only to
measure dk, which becomes a very simple experiment to estimate
the diffusion coefficient for free diffusion. For that experiment, the
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only important factor is the total diffusion weighting (the b-value)
and the precise shape of the waveform has little effect (assuming
fixed TE). The irregular shapes we observe are simply a random
choice from many waveforms with a particular b-value. For exam-
ple if we were to replace the z-direction waveform with a constant
gradient having the same integral, the size estimation results
would not change at all.

Overall the results here suggest that varying gradient orien-
tation within single measurements offers no advantage for the
simple system we are interrogating, i.e. the coherently oriented
cylindrical pores. Although the optimised waveforms we obtain
do have varying orientation, they show equivalent predicted
(optimisation objective function value) and simulated (posterior
variance on parameter estimates) performance to comparable
waveforms with fixed orientation. Varying orientation appears
in the waveforms because the precise choice of corner of the
GxGy square or GxGyGz cube at any particular time point is
somewhat arbitrary and many permutations of the different
corners are equivalent. We note that the basic structure of
the pulse sequence we use is that of a single-PGSE, however
its generalised waveforms accommodate waveforms that reflect
sequences like double-PGSE. However, the optimisation never
finds such waveforms, which suggests they provide less sensi-
tivity than straightforward oscillating gradients. The pulse se-
quence structure does not however accommodate stimulated
echo sequences [48] or steady-state free procession [49]. We in-
tend to extend the formulation in future to accommodate this
wider class, but it seems unlikely the central conclusion, that
varying orientation offers no advantage in estimating pore sizes
in white matter like samples, will change with such an
extension.

The advantage of varying orientation is however likely to
emerge for more complex systems. Double-PGSE is designed for
systems with anisotropic shaped pores, such as elliptical cylinders,
or pores with dispersed orientation [32,50–53]. Future work will
adapt the approach we use here for these systems where varying
orientation should prove advantageous, and ultimately provide a
tool for exploration of the broader gradient waveform space.

We must acknowledge the key conclusions here are not
concrete, because the optimisation searches a very large space
where it cannot hope to find the global minimum. Although we
consistently find similar results in multiple reruns and variations
of the experiments reported here, small pockets of the search space
with varying orientation and smaller F may exist but remain un-
found. Thus, our results only suggest that varying orientation offers
no advantage for our simple white-matter model. Future work will
compare with specific families of varying orientation pulse se-
quence, such as double-PGSE, to investigate this question further.
However, a comprehensive search of the space of varying orienta-
tion waveform is likely to remain prohibitive.

Other areas for further work include adapting the optimisation
for a more sophisticated and realistic white matter model. Here we
focus on only the simplest model with parallel single-sized imper-
meable perfectly cylindrical pores and assumed Gaussian extra-
cylindrical diffusion. The optimisation adapts naturally to models
that include other parameters such as glial cell compartments
[6,28], membrane permeability [6], a distribution of axon diame-
ters [7], a distribution of axon orientations [53], pore anisotropy
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[31,32,50], or better models of hindered diffusion, which may
depart from Gaussian significantly at certain lengthscales [54].

We assume here a fixed and known fibre orientation. To gener-
alise to unknown fibre orientation, we can adapt the optimisation
and imaging protocol model to be similar to [18] where each wave-
form defines a high angular resolution diffusion imaging (HARDI)
shell containing lots of measurements each with a unique central
orientation. While conceptually simple, this adaptation increases
computational requirements significantly, because we need to
run the matrix method separately for each central orientation/
waveform combination. However, that computation contains
redundancy that potentially we can exploit to make the optimisa-
tion more manageable. Future work is required to explore this idea.

Finally, future work needs to verify the theoretical findings
experimentally to begin translation to clinical implementation
and practice. Measured signals will certainly depart from the the-
oretical predictions on which we base our objective function and
optimisation, because of effects not included in our tissue and sig-
nal models. However, preliminary experimental results [55] do
show good agreement between theoretical prediction and mea-
sured data with fixed orientation general waveforms and confirm
the benefits for estimating the size of oriented pores. Furthermore,
other groups recently implement more regular oscillating gradient
waveforms successfully on a clinical scanner [56] with good re-
sults, so translation to clinical practice seems an achievable and
promising prospect.
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